
A Subset of Lotos with the Computat ional Power
of P lace /Trans i t ion-Nets 1

Michel Barbeau, Gregorv. Bochmann 2

A b s t r a c t

In this paper, we define a subset of Lotos that can be modelled by finite Place/
Transition-nets (P/T-nets). That means that specifications in that Lotos subset
can be translated into finite P/T-nets and validated using P/T-net verification
techniques. An important aspect of our work is that we show that conversely
P/T-nets can be simulated in our Lotos subset. It means that the constraints
we put on Lotos in order to obtain finite nets are minimally restrictive. We may
also conclude that our Lotos subset and P/T-nets have equivalent computational
power. To the best of our knowledge, no such bidirectional translation scheme
has been published before.

Topics:
Relationships between net theory and other approaches.

1. I n t r o d u c t i o n

In this paper, we define a subset of Basic Lotos [Bolo 87, ISO 88] that can be
modelled by finite Place/Transition-nets (P/T-nets). That means that specifica-
tions in that Lotos subset can be represented and translated into finite P/T-nets
and validated using P/T-net verification techniques. An important aspect of our
work is that we show that conversely P/T-nets can be simulated in our Lotos
subset. It means that the constraints we put on Lotos in order to obtain finite
nets are minimally restrictive. We may also conclude that our Lotos subset and
P/T-nets have equivalent computational power. To the best of our knowledge,
no such bidirectional translation scheme has been published before.

The problem of modelling process-oriented languages, and more specifically
CCS and CSP like languages, by Petri nets has been tackled by several authors.
Cindio et al. [Cind 83], Degano et al. [Dega 88], Glabbeek [Glab 87], Goltz
[Golt 84a, 84b, 88], Nielsen [Niel 86], Olderog [Olde 91] and Waubner [Taub 89]
considered CCS or CSP, or both. Lotos has been worked by Marchena and
Leon [Marc 89], and Garavel and Sifakis [Gara 90]. The approaches may be

1This work was per formed within a research projec t on objec t -or ien ted spec-
ifications funded by Bel l -Nor thern Research (BNR) and the C o m p u t e r Research
Ins t i tu te of Montr6al (CRIM) . Funding f rom the Natura l Sciences and Engineer-
ing Research Council of Canada is also acknowledged.

2First author's address: Universit@ de Sherbrooke, D~partement de math~matiques et
d'informatique, Sherbrooke (Quebec), Canada, J1K 2R1. Second author's address: Universit@
de Montreal, D~pa~'tement d'IRO, C.P. 128, Succ. "A", Montr@al (Qu@bec), Canada, H3C
3J7.

50

categorized based on the following criteria: i) style of definition, ii) finiteness of
the representation, and iii) distinction of concurrency and nondeterminism.

One of two definition styles may be adopted, namely denotational or opera-
tional. A denotational style is used in: [Cind 83], [Gara 90], [Glab 87], [Golt 84a,
84b, 88], [Niel 86], [Marc 89] and [Taub 89], whereas an operational style, s la
Plotkin, is used in: [Dega 88], [Olde 91] and in the present paper. In opposition
to the operationM approach, the denotational style is constructive. It means that
the definition yields directly to a procedure for translating terms of the process-
oriented language to Petri nets. However, we shown in [Barb 91a, b] that thanks
to our operational definition an important P/T-net verification method can be
adapted to Lotos without even translating the latter to the former.

Another important matter is whether or not the Petri net representation of
the process-oriented language is finite. It is well known that an unbounded num-
ber of Petri net places and transitions is required to represent a process-oriented
language when recursion is combined with parallel composition, sequential com-
position, hiding and disabling operators. This difficulty means that it is impos-
sible to transfer to the process-oriented language several important verification
techniques elaborated for Petri nets, since they require finite nets. Note that in
our mind, finite nets does not mean finite state systems. Finite representations
can be obtained by restricting the process-oriented language or using high-level
Petri net models. Finite representations for subsets of CCS are proposed in [Golf
88], using P/T-nets, and in [Taub 89], using Predicate/Transition-nets, which is
a high-level model. Finite extended Petri nets are generated from Lotos, with
the finite control property, in [Gara 90], this work is also interesting because the
data part of Lotos is also handled. In this paper we define a subset of Basic
Lotos, with syntactical constraints, that can be modelled by finite P/T-nets.

Non distinction of concurrency and nondeterminism means that Lotos ex-
pressions such as a; stoplllb; stop and a; b; stop~b; a; stop have the same semantic
interpretation. Distinction of concurrency and nondeterminism allows accurate
representation of behaviors by partial orders. It is a representation that shows
just natural dependencies between actions. Multi-sets of actions are possible
in a single transition. This has an impact on treatment of fairness problems
[Reis 84]. Our Place/Transition-net semantics is less attractive, than definitions
described in Refs. [Dega 88], [Colt 88], [Niel 86] and [Olde 91], with respect to
distinction of concurrency and nondeterminism.

An important feature in our approach is that we show that P/T-nets can be
simulated in our Lotos subset. Other authors have proposed simulations of Petri
nets in languages such as Prolog, Azema et al. [Azem 84], or Meije, Boudol et
al. [Boud 85]. These simulations are not in languages that have been shown
translatable into finite Peo nets. The goal of Azema et al. is to use Prolog as a
simulation tool for Petri nets whereas the aim of Boudol et al. is to provide a
textual representation for Petri nets. Translation into Lotos of another graphical
representation for behaviors, called Process-Gate Network, is described [Bolo 90].

In Section 2, we introduce the P/T-net model. Our Basic Lotos subset that
can be translated into finite P/T-nets is called PLotos and is defined in Section

51

3. In Section 4, we discuss modelling of PLotos by P/T-nets. The converse
simulation is presented in Section 5. We conclude in Section 6.

2. P / T - n e t s

We represent a P/T-net [Pete 81] as a tuple (P, T, Act, Mo) where:

�9 P, is a set of places {Pl, . . . ,P,},

�9 T C_ .A["P x Act • Af P, is a transition relation,

�9 Act, is a set of transition labels, and

�9 M0 E A/"P, is the initial marking.

A P/T-net is f in i te if the sets P, T and Act are finite.
Af is the set of non-negative integers. A/"P denotes the set of multi-sets over

the set P. An element t = (X,a ,Y) E T i s also denoted a s X - a ~ Y. Its
p r e se t pre(t) is X, p o s t s e t post(t) is Y and ac t ion act(t) is a. The multi-sets
X and Y are also called respectively the input and output places of t. We denote
as pre(t)(p) (post(t)(p)) the number of instances of the element p in the preset
(postset) of t.

The operators <, + and - denote respectively multi-set inclusion, sum-
mation and difference. A multi-set X can also be seen as the formal sum:
x = Ep p p e(t)(p)p.

A Petri net marking is also a multi-set. We denote by M(pi) the number of
instances of the element pi in the multi-set M. Instances of the element pi are
also called tokens inside place pi.

pre(t)(p) is the number of tokens that place p must contain to enable tran-
sition t. A transition t E T is e n a b l e d in marking M if pre(t) <_ M. This
is denoted as M(t :>. An enabled transition can be f i red and the successor
marking M ~ is defined as:

M' = M - we(t) + post(t)

this is represented as M(t > M'.
We define the r e a c h a b i l l t y g r a p h of a P/T-net N = (P, T, Act, Mo) as a

graph RG(N) = (RS, E, Mo) where:

1. RS is the reachability set, i.e. a set of markings of N,

2. E C_ RS • Act • RS, is a transition relation, and

3. for all M E RS, t E T, if M(t > M' then M' E RS and (M, act(t), M') E
E.

52

3. Def ini t ion of the Syntax of PLotos

In this section we define the syntax of a subset of Basic Lotos, namely PLotos
which is equivalent, in terms of computational power, to finite P/T-nets (to be
shown formally in Section 4). First, we discuss Basic Lotos. Then, we define
PLotos as Basic Lotos along with syntactical constraints. The syntax of Basic
Lotos is given in Ref. [Bolo 87] and in Appendix A.

It is well known that Basic Lotos has the computational power of 3bring
machines. Our aim is to reduce the power of Basic Lotos to the one of P /T-
nets. Before we state the syntactical constraints that make PLotos equivalent
to P/T-nets, we define preliminary concepts.

The "calls" relation

Let Pl be a process and Bpl its defining behavior-expression. We say that Pl
calls P2 if B w has one or more occurrences of P2. This relation is denoted as:

C = {(Pl, P2) :Pl calls P2}

The mutual recursion relation

Let C + be the transitive closure of C. We define in terms of C + the m u t u a l
recursion relation (1) as follows:

: { (P l , P 2) : (Pl,P2) ~ C'/r" A (P2,Pl) E C + }

Recursive process

The process p is recursive if (p, p) 6 (I).

Functionality

The functional i ty of a behavior B is equal to exit iff every alternative in B
terminates with the successful termination action ~, otherwise it is equal to
noexi~ [Bolo 87].

Context

A Lotos context C[] is a Lotos behavior-expression with a formal "behavior-
expression" parameter denoted as "[]". If C[] is a context and B is a behavior-
expression then C[B] is the behavior-expression that is the result of replacing
all occurrences of "[]" in C[] by B. For example, let C[] be the Lotos context
g; []. The behavior-expression C[stop] is defined as g; stop.

Guarded process

A process instantiation term p is guarded if it occurs in any of the following
forms:

53

�9 q[a; C2N]

�9 G[B >> C2N]

�9 61 [B[> C N]

where C1[] and C2[] are any contexts, a is any gate identifier and B is any
behavior-expression.

P L o t o s

PLotos is defined as the subset of Basic Lotos that satisfies the following syn-
tactical constraints:

1. Terms that instantiate recursive processes must be guarded.

2. Operands B1 and B2 in a parallel composition BIlIIB2 must have the noexil
functionality.

3. Let C1[] and C2[] denote two contexts and B denote a behavior-expression.
For any pair (Pl,P2) E �9 the defining behavior-expression of Pl may not
have the following patterns:

3.1 C1 [C2 [p2] * B], where the operator %" is either "l[gl, ..., gn]l" or "> >"
or ~[~"

3.2. Cl[Bl[gl, ..., gn]]C2[p~]]

3.3 Cl[hide gl, ...,g,~ in C2[p2]]

4. The behavior-expression B1 must have the exit functionality in behavior-
expressions of the forms: B1 >> B2 or BI[> B2.

Mutual recursion is possible in sub-terms of the form "BIIIIB2", with operands
of functionality noexit (i.e. constraint 2). The control is not finite state but can
be represented by a finite P/T-net. It is possible to simulate an arbitrarily large
stack if the constraint 3.1 is unsatisfied (e.g. [Gotz 86]). Arbitrarily large stacks
cannot be simulated by finite P/T-nets.

PLotos has the computational power of finite P/T-nets. That is, every PLo-
tos specification can be modelled by an equivalent finite P/T-net. Conversely,
every finite P/T-net can be modelled by an equivalent PLotos specification.
In Section 4, we show how a PLotos specification can be modelled by a finite
P/T-net. The converse is demonstrated in Section 5.

4. P / T - n e t S e m a n t i c s f o r P L o t o s

4 .1 . G e n e r a l I d e a

Our PLotos to P/T-nets mapping is inspired by the work of Olderog [Olde 91]
for CSP. In general, a Lotos behavior-expression B represents the composition

5~-

of several concurrent components. In our simulation of PLotos by P/T-nets, the
expression B is explicitly decomposed into its components which become tokens
when this behavior is activated. More precisely, parallel components and states
of parallel components are respectively modelled by Petri net tokens and places.
The place in which a token is contained denotes the state of the corresponding
component. Every Lotos gate occurrence is modelled by a Petri net transition.
Tokens, contained in the transition input places, represent components synchro-
nized on the gate. Tokens deposited into the transition output places represent
the successor components after the transition has occurred. Several tokens, con-
tained in the same place, represent several identical components. This models
unbounded process instantiation with finite P/T-nets.

For example, the Lotos expression u; v; stop[[u][u; stop represents two con-
current components. The first component executes actions u and v and then
stops. The second component executes action u and becomes inactive. Both
components are coupled on gate u and are therefore dependent on each other
with respect to the occurrence of u. The decomposition of u; v; stop[[u][u; stop
into its components is denoted as the multi-set {u; v;stop[[u][, [[u][u; stop}. In
this syntax, we represent explicitly the fact that the components are coupled on
gate u by concatenating the symbol [[u][to the right of u; v; stop and to the left
of u; stop.

Places modelling states of components are labelled by the corresponding
component-expressions. Transitions are labelled by gate names. The "stop" ex-
pression represents inaction and does not appear in the P/T-net. In our construc-
tion, edges from places to transitions are always one valued (i.e. (Vt, p)[pre(t)(p)
equals 0 or 1]) and every place has a distinct label. We unambiguous ly de-
no te a place by its label. /,From the above multi-set of components, it is
possible to derive the transition represented as the triple:

{u; v; stopl[u]l, I[u]t ; s t o p } - - - {v; stopl[]l}

To derive such triples, we define: i) a function decomposing PLotos behavior-
expressions into component-expressions, and ii) a system of inference rules. The
head of each rule matches a term of the form:

{Pl, ...,Pm} -- a ~ {ql, ...,qn}

Such a rule can be applied to infer, as a function of the component-expressions, a
transition with preset {Pl, ..., P,~}, action a and postset {ql,..., q,@ For instance,
the rule:

i f M l - a ~ M ; a n d a ~ { S , 6}
then MI.[[S][- a ~ M~.[[S][

is used to infer the transition:

{v; stopl[]l} - v --, {}

We substituted {v; stop}, u and v to respectively M1, S and a. M[is empty
because the decomposition of "stop" is defined as the empty set.

55

We introduce the decomposition function in Section 4.3 then we present, in
Section 4.4, the inference rules. But first, in Section 4.2 we translate Lotos
specifications in a form that makes easier development of consistency proofs.

4 .2 . N o r m a l F o r m Specifications

PLotos specifications are rewritten into simpler forms, called normal form spec-
ifications. Sub-terms in which mutual recursion does not occur are expanded,
that is, process definitions are substituted for process calls. Then we distinguish
every parallel composition Bll[gl , . . . ,gn]lB2 by labelling the operator with an
unique value k. This is represented as I[gl, ..., gn]lk. For example:

p rocess pl [a, b, c] : noexi t :=
(p2 [a, bill Ip2[a, b])Dc; pl[a, b, c]

e n d p r o c
process p2[a, b] : noexi t :=

a; b; stopl[a]la; stop
e n d p r o c

is rewritten as:

p rocess pl[a, b, c] : noexi t :=
((a; b; stop I[a]]1 a; stop) ll I(a; b; stop lie] 12 a; stop))Be; Pl [a, b, c]

e n d p r o c

Static relabelling instead of dynamic relabelling is performed when pro-
cess instantiation terms are substituted by the corresponding defining behavior-
expressions. This issue is further discussed in Section 4.3.

As discussed in Section 4.1, with the small example: {u; v; stopl[u]] ,][u]lu; stop},
every general parallel composition is decomposed into two or more component-
expressions during the PLotos to the P/T-net modelling process. Labelling of
general parallel operators with a unique value is required to preserve important
contextual information of component-expressions. This information is required
to unambiguously determine which component-expressions need to be synchro-
nized together.

4.3. Decomposition F u n c t i o n

The decomposition function is denoted as dec. Its domain is the set of well-
formed PLotos behavior-expressions. Its range is the set of all possible finite
multi-sets of component-expressions.

Let B1, B2 denote syntactically correct PLotos behavior-expressions, a de-
note an action name and S --- gl, ...,gn a list of synchronization gates, the de-

56

composition function dec is defined

(dl) dec(stop)
(d2) dec(a; BI)
(d3) dec(B1DB2)
(d4) dec(p[gl,..., gn])
(d5) dee(Bill[B2)
(d6) dec(B1][S]]kB2)
(d7) dec(B1 > > B2)
(d8) dec(B1 [> B2)
(d9) dec(hide S in BI)
(dlO) dec(exit)

where:

as follows:

:={}
:= {a; B1}
:= {BlaB2}
:= dec(Bp[gl/hl, ..., gn/hn])
:= dec(B1) + dec(B~)
:= dec(B1). I[S]lk + I IS] Ik.dec(B2)
:= {B1 > > B2}
:= {Bi[> B2}
:= hide S in.dec(Bi)
:= {exit}

�9 in (d4), Bp represents the body of process definition p,

�9 gl, ..., gr~ is a list of actual gates,

�9 hi, ..., h,~ is a list of formal gates,

�9 [gl/hl, ..., g~/h~] is the relabelling postfix operator, gate hi becomes gate
gi (i = 1, ..., n), and

�9 the expression dec(B1).l[S]lk denotes {xl[S]lk :x E dec(B1)}, similarly for
I[S]lk.dec(B2) and the expression hide S in.dec(B1) denotes {hide S in x:
x E dec(B1)}.

The dec function is deterministic, taking into account operator precedences
given in [ISO 88]. The restriction to guarded recursive processes (see Section 3)
is required to stop recursion in the dec function.

The relabelling operator is not user accessible and exists for the semantic
description of process instantiation. In Lotos, relabelling is dynamic; gates are
renamed at the execution time. For instance, let us consider this process defini-
tion:

p r o c e s s p[a, b] : n o e x i t :=
a; stopl[a , b]lb; s top

e n d p r o c

Instantiating p with p[a, a] yields an inactive process with dynamic relabelling,
since the expression a;stop][a,b]lb ;stop is inactive. Nevertheless, with static
renaming p[a,a] yields the expression a; stopl[a,a]ta; stop which may perform
the action a and becomes inactive.

It can be shown easily that for injective relabelling operators, static and
dynamic relabelling are equivalent. For the sake of simplicity, hereafter we con-
sider solely injective relabellings and perform static renaming, that is syntactical
substitution. We believe that this restriction is not significant, at least from a
computational point of view, and it is fulfilled in many applications.

57

4.4. Inference Ru le s

This section exposes the inference rules of our PLotos to P/T-nets mapping. The
P/T-ne t N -- (P, T, Ac t , M0), with reachability set R S , associated to a PLotos
behavior-expression B is defined as:

. �9 Mo = dec (B)

* M o E R S

�9 (Vp)[Mo (p) > 0 ::~ p E P]

2. i f M E R S a n d X < M a n d X - a - - * Y t h e n

* (Vp)[Y(p) > 0 ::~ p E P]

. (X , a , Y) e T

�9 a E A c t

. M I = M - X + Y

�9 M ' E R S

3. only the elements that can be obtained from items 1 or 2 are in P, T and
Ac t

The transition instances are inferred from the rules below. For all PLotos
behavior-expressions B1, B~, B2, B~, action name a, list S = g l , . . . , gn of syn-
chronization gates and component-expression multi-sets M1, M2, M~, M~:

(rl)
(r2)

(ra)

(r4)

(rS)

(r6)

(r7)

(r8)

(r9)

(rl0)

(r l l)

{a; B1} - a ---* dec(B1)

if B1 - a -+ B~
then {BlaB2} - a --~ dec(B~)

if B2 - a --* B~
then { B I ~ B ~ } - a ~ dee(B~)

i f M l - a ~ M ~ a n d a ~ { S , 5}
then MI.I[S][k - a ~ M~.I[S][k
if M2 - a --+ M~ and a ~ {S, 5}
then I[S][k.M~ - a --+ I[S]I~.M~
i f M l - a ~ M ~ a n d M 2 - a - - - M ~ a n d a E { S , 5 }
then MI.[[S]Ik + [[S]]~.M2 - a --+ M~.I[S]Ik + I[S][k.M~
if B1
then
if B1
then
if B1
then
if B1
then
if B2
then

- -a - -~BI1 and a r
{B1 > > B ~ } - a ~ {B~ > > B2}

{B1 > > B2} - i ~ dec(B2)
- a - - * B ~ a n d a r
{BI[> B.q - a B2}
-5~B~
{BI[> B2} - 5 -+ dec(B~)

- a - - - ~ B~

{BI[> B2} - a ---* dec(B~)

58

(r12) if M1 - a --+ M~ and a ~ {S}
then hide S in.M1 - a ---+ hide S in.M~

(rl3) if M1 - a ~ M~ and a E {S}
then hide S in.M1 - i ~ hide S in.M~

(r14) {exit} - 5 ~ {stop}

In the "if part" of inference rules (r2), (r3), (rT) (r8), (r9), (rl0) and (r l l)
behavior B1 (B~) makes a transition to behavior B~ (B~) on action a or 5 in
accordance with the original Basic Lotos semantics.

T h e o r e m 1 (Boundedness theorem) PLotos can be modelled by a finite P / T -
net.

We must show 3 that any PLotos normal form specification:

s p e c i f i c a t i o n . . , b e h a v i o r B 0 . . , e n d s p e c

can be modelled by a P /T-ne t N = (P, T, Act, Mo) whose sets P, T and Act are
finite (note that the associated teachability set R S is not necessarily finite).

In the sequel, the operators in component-expressions are classified as follows:

�9 s top, exi t , and pig1, ...,gn] are nullary operators.

�9 I[S]lk, and h ide S in are unary operators.

�9 ";", ">>" and "[>" are binary operators.

Note that the operator "111" never appears in a component-expression.
(The set Act is finite). In a normal form PLotos specification there is a finite

number of gates. Lotos gates are translated to P/T-net transition labels, i.e.
elements of Act. Consequently, the set Act is finite.

(The set P is finite). The statement "The set P is finite" is equivalent to
the statement:

S1: There exists a K such that for all p E P, the number of
nullary operators in p is less than K.

This equivalence is a consequence of the conjunction of the following facts (let
us suppose that we distinguish, in the normal form specification, every operator
from the others): i) The set of gates and nuUary, unary and binary operators,
that can possibly be used in a component-expression is finite, ii) Every unary
or binary operator is used at most once in a component-expression, iii) Using
a finite number of gates and nullary, unary and binary operators, and zero or
one occurrence of every unary or binary operator, there is a finite number of
syntactically different component-expressions that can be constructed.

The negation of statement $1 is the following statement:

3The proof technique is similar to the one used in [Gara 89].

59

$2: It is possible to infer from dec(Bo) a component-expression p
in which there is an unbounded number of nullary operators.

Statement $2 implies that there exist processes pl,p2 with:

a marking:

(Pl,P2) E

M , E R S

and a component-expression p with:

p E M,~

where there is a nullary operator who occurs an unbounded number of times
in p. This unbounded number of occurrences is due to the substitution of re-
cursive instantiation terms of Pl by its defining behavior-expression Bpl of Pl.
Nonetheless, this true solely if Bp1 has one of the following patterns:

�9 C1[C2[p2] * B], where the operator " ." is either "][gl, ..., g,~]l" or " > > " or
u[>~.

�9 Cl[Bl[gl,...,g,]]C2~2]].

�9 C1 [hide gl, . . . ,gn in C2[p2]]

where Cl[] and C2[] denote two contexts and B denote any behavior-
expression. However, these patterns ar disallowed in PLotos (see Section 3).

(The set T is finite). This follows from the fact that from a finite set of
syntactically different component-expressions, application of the inference rules
can derive a finite number of transitions.

The next theorem states that the P/T-net semantics is in accordance with
the original semantics of Lotos.

T h e o r e m 2 (Consistency theorem) The Petri net semantics of Lotos is consis-
tent with the standard Lotos semantics. That is, for all PLotos behavior expres-
sion B, marking M with dec(B) := M:

1. [B - a ---+ B'] ~ (3M') (3 t) [M(t > M' A act(t) -= a A dec(B') := M']

2. [M(t > M'] ~ (3B')[B - act(t) -+ B' A dec(B') := M']

The proof is by induction on the number of operators in a behavior-expression
B and refers to the standard Lotos semantics in Refs. [Bolo87] and [ISO88].

Def in i t i on 1 Two graphs A1 = ($1, El, nl) and A2 = (S~, E2, n2) are b l s imu-
lar [Park 81] if there exists a relation R C_ S1 X $2, called a bisimulation relation,
with:

1. (nl, n2) c R, and for aU (., m) e R

60

2. [(n, a, n') e El] ~ (3m')[(m, a, m') e E2 ^ (~', m') e R], and

3. [(m, a, m') E E2] ~ (Sn')[(n, a, n') E E1 A (n', m') E R].

Corol la ry 1 Let B be a PLotos behavior-expression, with transilion graph TG,
and let N = (P,T, Act, Mo) be the associated P/T-net wilh reachability graph
RG(N). The dec funelion is a homomorphism from TG reachability set to
I~G(N) reachability set. TG and RG(N) ave blslmular under the bisimu-
lation relation R defined as:

1. (B, Mo) E R, and

2. For all B' in the TG teachability set and for all M in RG(N) reachability
set:

(B', M) E R ~ dec(B') := M

The dec function is a graph homomorphism because it identifies equiva-
lent Lotos behavior-expressions BIlIIB2 with B2IIIB1, and B1]II(B21[IB3) with
(BII]]B2)I]IB3. These equivalences are in accordance with the commutativity
and the associativity laws in [[SO 88]. Solely syntactic nature information is
lost, "dec" preserves all semantic properties. This can be illustrated by the
following commutative diagram:

B -dec --* M

I I
a a

B' -dec---, M'

5. Simulation of P /T-ne t s in PLotos

In Section 4, we identified a subset of Lotos, PLotos, that can be modelled
by finite P/T-nets. In this section, we show that conversely P/T-nets can be
simulated by PLotos. These two facts lead to the conclusion that PLotos and
P/T-nets are equivalent models, that is models with equivalent computational
power.

We make two reasonable hypotheses. First, we simulate in PLotos, P/T-nets
whose place to transition edges are one valued, i.e.:

(Vt,p)[pre(t)(p) equals 0 or 1]

This restriction is not a handicap because it has been proved [Kasa 82] that
P/T-nets of arbitrary edge valuation can be simulated by P/T-nets whose edges
are all valued to one, with language equality equivalence.

Second, we assume that no place is simultaneously in the preset and the
postset of a single transition. This restriction is not significant. P/T-nets with
circuits made of one place and one transition can be simulated by circuit free
(pure) P/T-nets [Sram 83].

61

Before we go into detail, we give a brief overview of the simulation. Given
a P/T-net g = (P, T, Act, M) with set of places P = {Pt,...,Pn), we define a
PLotos process Ni,n with equivalent behavior. That is, the reachability graph
of N and the transition graph of Nt,n are bisimular. The process Ni,n is defined
inductively on the number n of places.

Every transition t E T is mapped to a Lotos gate, also named t. Every place
Pi E P is mapped to three PLotos processes, namely tokeni, Pi and Pi(k). The
process tokeni models a token inside the place pi. It participates in actions that
occur at gates corresponding to outgoing transitions of the place Pi. Instances
of tokeni are created by the process pi when the place pi incoming transitions
are fired.

The process Pi(k) models place Pi containing k tokens and is defined as the
independent parallel composition of one instance of process Pi and k instances of
process tokeni. Simulation of a place pi in PLotos is further discussed in Section
5.1 (with an example in App. B).

The whole PLotos model of the P/T-net N, with current (or initial) marking
M is defined inductively. The PLotos model Nt,t of N, restricted to place Pi,
is defined as the process Pi(M(1)).

The model Ni,i of N, restricted to places Pi, ...,Pi, is defined as the parallel
composition of the process Ni,i-i that models N restricted to places Pi,..., Pi-i
and the process Pi(M(i)). These two processes are synchronized on the set
of transitions that place Pi shares with places Pi, ...,Pi-1. This construction is
presented formally in Section 5.2 (with an example in App. B).

5.1 Modelling of Places

Let g = (P,T, Act ,M) be a P/T-net with P = {Pi, ...,Pn) and T = {tl, ...,tin}.
We first discuss how tokens inside places are represented by Lotos processes.

Given place Pi E P, let:

�9 F-i(pi) = {tr : post(tl)(pi) > 0}, transitions that deposit tokens into
place Pi

�9 r(pi) = {to :pre(to)(pi) > 0}, transitions that extract tokens from place
Pi

�9 T(X) = [.Jp,ex (r(pi) t2 F-l(pi)), transitions connected to places in Z

A token inside place Pi can participate in the firing of a transition in F(pi).

Defini t ion 2 Let r(pi) = {to1, . . . , to~} , a token inside place pi is represented
as the following PLotos process:

process tokeni[tol, ..., tov]:noe~it:--
toi ; stop D...~tov ; stop

endproc

/ fF(pi) is empty, then the body oftokeni is stop. Let F-i(pi) = {txl, ...,Qu},
the place Pi is modelled by the following process:

62

process Pi [tll , Qu, to1, . . . , toy] :noex i t :=
t~; (.(tok~n~[to~. ,to~]ll[I l l t~ to~])

(* post(t.)(p~) ti~es *)
III
Pi [tel,..., t in, t o l , ..., tov])

B..B
t l u ; ((t oker t i [to1,'", to~]lll""" II Itot~em [to ~ , ..., to ,])

(* post(tIu)(pi) t imes *)

III
Pi[t I1, "", t lu, tOl , ".', tOy])

endpro c

Note that recursive calls to Pi are guarded and allowed in a pure interleaving.
Informally, this says that when an input transition of place Pi is fired, either t l l
or ... or Qu, then tokens are deposited inside place Pi (instances of process
tokeni are created). These new tokens can enable and fire transitions in P(Pi).
If F - l (p i) is empty, then the body ofpi is stop.

The next lemma demonstrates the consistency of the PLotos model of a place.

L e m m a 1 Let, for k 6 N', Pi(k) denote the place Pi containing k tokens, mod-
elled as the PLotos processes 4.

For all k 6 Af :

P~(O) : p~
P~(k) =tokeni[[[P~(k- 1) i l k > 0

P~(k) - t - p r

V

[(t 6 r -Z(p i) A p = Pi(k + post(t)(pi)))
(k > OAt C I'(pi) Ap = P i (k - 1))].

The proof is by induction on k.

5 . 2 M o d e l l i n g o f P / T - n e t s

The model of a P / T - n e t in PLotos is also defined inductively. We first consider
unlabelled P/T-nets . For 1 < i < n, we denote by:

Nl,i = (Pl,i , Tl,i , MI,,)

the subnet of N -- (P, T, M) restricted to places {Pl, ...,Pi} where:

* Pl , i = { P l , . . . , P l }

* Tl,i = {(X, act(t), Y) : t 6 T A X = 2pePs. , pre(t)(p)p
A Y = 2veP~,, post(t)(p)p A (X # {} V Y # {})}

4 For the sok, e or readability, we omit gate-tuples.

63

�9 MI,~, the marking M restricted to places in Pl,i

Note that NI,~ = N. We denote by Ml, i (i) the number of tokens inside place p~
for the marking Ml,i.

Def in i t ion 3 For 1 < i < n, the subnel Nl, i is modelled by a PLolos process
named Nl , i (Ml , i) defined as:

p roces s NI,I (MI,1)[t l , ..., to~] :noez i t :=
P1 (MI,1 (1))

endproc

For i > 1, N l , i (Ml , i) is defined as:

p roces s g l , i (Ml,i)[Q , ..., trn] :noe~i t :=
Pi (Ml , i (i))][T({pl}) N T({pl,-..,Pi-1})]] g l , i - l (M l , i - 1) [t l , . . . , tin]

endproc

Note that, for i = 1, ..., n, NI,i(MI,i) is not recursive (i.e constraint 3.1 and
3.2 are not violated).

The model of a P/T-net N in PLotos is the process Nl ,n(Ml ,n) . The next
lemma demonstrates the consistency of the PLotos model of P/T-nets.

L e m m a 2 Let N = (P , T , M) be a PIT-pe t and M ' E A f P be a marking. For
every i = 1, . . . ,n, let Nl,i = (P l , i ,T l , i ,Ml , i) be the subnet defined as above, lhen
for all t E Tl,i :

Ml , i (t > M~, i r NI,i(MI,i) - t --+ Nl,i(M~,i)

The proof is by induction on i.
Let N = (P ,T , Act, M) be a labelled P/T-net and let Nl , . (Ml ,n) be the

PLotos model of the corresponding unlabelled P/T-net . We may add labels
al, ..., al in Act, of transitions in T, to the PLotos model as follows:

p rocess

w h e r e
p rocess

LabelledNl,n (Ml,n)[al, ..., al] :noexi t :=
h ide tl, ...,tin in A[al, . . . ,a l , t l , ...,t,~] I[tl, ..., tm]l Nl ,n(Ml ,~)[t l , ...,t,~]

A[al , ..., al, t l , ..., tm]:noexlt :=
tl; act(t l); A[al, ..., a l , t l , ...,tm] D " " "~ tm; act(tm); A[al, . . . ,a l , t l , ...,tm]

e n d p r o c
e n d p r o c

Note that in the process LabelledNl,n, the constraint 3.3 is not violated.

6. C o n c l u s i o n

The fact that PLotos has the computational power of P/T-nets, with bisimula-
tion equivalence, means that:

64

1. properties that are decidable for P/T-nets are decidable as well for PLotos,
and

2. algorithms for deciding properties of P/T-nets can be adapted to PLotos.

Furthermore, the aforementioned items are obtained by minimally restricting
Lotos, since P/T-nets can be modelled by PLotos. We have investigated adap-
tation of P/T-nets verification techniques to PLotos in Refs. [Barb 91a] and
[Barb 91b].

Acknowledgements
The authors thank the members of the CRIM/BNR project for many fruitful
discussions. We wish to thank Prof. Alain Finkel from l~cole normale sup@rieure
de Cachan who contributed to the proofs in Section 5.

R e f e r e n c e s

[Azem 84] P. Azema, G. Juanole, E. Sanchis, M. Montbernard, Specification
and Verification of Distributed Systems Using Prolog Interpreted Petri Nets, 7th
International Conference on Software Engineering, 1984.

[Barb 91a] M. Barbeau, G. v. Bochmann, Extension of the Karp and Miller
Procedure to Lotos Specifications, Computer Aided Verification'90, ACM/AMS
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 3, 1991, pp. 103-119; and Springer- Verlag, LNCS 531, pp. 333-342.

[Barb 91b] M. Barbeau, G. v. Bochmann, The Lotos Model of a Fault Protected
System and its Verification Using a Petri Net Based Approach, Workshop on
Computer-aided verification, Aalborg, Danemark, 1991; and Springer-Verlag,
LNCS 575.

[Bolo 87] T. Bolognesi, E. Brinksma, Introduction to the ISO Specificatzon Lan-
guage Lotos, Computer Networks and ISDN Systems, Vol. 14, No. 1, 1987, pp.
25-59.

[Bolo 90] T. Bolognesi, A Graphical Composztion Theorem for Networks of Lo-
los Processes, Proceedings of Distributed Computing Systems, Paris, May-June
1990, pp. 88-95.

[Boud 85] G. Boudol, G. Roucairol, R. de Simone, Petm Nets and Algebraic
Calculi of Processes, Advances in Petri Nets, 1985, pp. 41-58.

65

[Brain 83] G. W. Brains, Rdseaux de Petri: Thdorie el Pratique - T.1. Thgorie
et analyse, Masson, Paris, 1983.

[Cind 83] F. de Cindio, G. de Michelis, L. Pomello, C. Simone, Milner's Com-
municating Systems and Petri Nets, in: A. Pagnoni, G. Rozenberg (Eds.), Ap-
plication and Theory of Petri Nets, Springer-Verlag, IFB 66, 1983, pp. 40-59.

[Dega 88] P. Degano, R. de Nicola, U. Montanari, A Distributed Operational
Semantics for CCS Based on Condition/Event Systems, Acta Informatica, Vol.
26, 1988, pp. 59-91.

[Gara 89] If. Garavel, E. Najm, Tilt: From Lotos to Labelled Transition Systems,
in: P. It. J. van Eijk, C. A. Vissers, M. Diaz (Eds.), The Formal Description
Technique Lotos, North-iiolland, 1989, pp. 327-336.

[Gara 90] H. Garavel, J. Sifakis, Compilation and Verification of Lotos Specifi-
cations, PSTV X, Ottawa, 1990, pp. 359-376.

[Glab 87] R. J. van Glabbeek, F. W. Vaandrager, Petri Net Models for Algebraic
Theories of Concurrency, Proceedings of PARLE, Vol. II, LNCS 259, Springer-
Verlag, 1987.

[Golt 84a] U. Goltz, A. Mycroft, On the Relationship of CCS and Pet~'i Nets,
in: J. Paredaens (Ed.), Proceedings of ICALP 84, LNCS 172, Springer-Verlag,
1984, pp. 196-208.

[Golt 84b] U. Goltz, W. Reisig, CSP-Programs as Nets with Individual Tokens,
in: G. Rozenberg (Ed.), Advances in Petri Nets 1984, LNCS 188, Springer-
Verlag, 1985, pp. 169-196.

[Golt 88] U. Goltz, On Representing CCS Programs by Finite Pelri Nets, in:
M. Chytil et al. (Eds.), Mathematical Foundations of Computer Science 1988,
LNCS 324, Springer-Verlag, 1988, pp. 339-350.

[Gotz 86] R. Gotzhein, Specifying Abstract Data Types with Lotos, Proc. of
PSTV VI, Montreal, 1986.

[ISO 88] ISO, Lotos - A Formal Description Technique Based on the Temporal
Ordering of Observational Behavior, IS 8807, E. Brinksma (Ed.), 1988.

[Kasa 82] T. Kasai, R. E. Miller, ttomomorphisms Between Models of Parallel
Computation, J.C.S.S., Vol. 25, 1982, pp. 285-331.

66

[Marc 89] S. Marchena, G. Leon, Transformation from Lotos Specs to Galileo
Nets, in: K. J. Turner (Ed.), Formal Description Techniques, North-Holland,
1989.

[Niel 86] M. Nielsen, CCS and its Relationship to Net Theory, in: W. Brauer,
Advances in Petri Nets 1986, Part II, LNCS 255, Springer-Verlag, 1986.

[Olde 91] E.-R. Olderog, Nets, Terms and Formulas: Three Views of Concurrent
Processes and their Relationships, Cambridge Tracts in Theoretical Computer
Science 23, Cambridge University Press, 1991.

[Park 81] D. M. R. Park, Concurrency and Automata on Infinite Sequences,
Proceedings of 5th GI Conf. on Theoretical Computer Science, LNCS 104,
Springer-Verlag, 1981, pp. 167-183.

[Pete 81] J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice
Hall, 1981.

[Reis 84] W. Reisig, Partial Order Semantics Versus Interleaving Semantics for
CSP-like Languages and Its Impact on Fairness, in: G. Goos, J. Hartmanis, l l t h
Colloquium on Automata, Languages and Programming, LNCS 172, Springer-
Verlag, 1984, pp. 403-413.

[Taub 89] D. Taubner, Finite Representation of CCS and TCSP Programs by
Automata and Petri Nets, LNCS 369, Springer-Verlag, 1989.

Appendix A: Basic Lotos

A.1. Syntax of Basic Lotos

We assume that Basic Lotos specifications are constructed as follows:

specification ::= specification specification-identifier formal-parameter-list
behavior

behavior-expression
[local-definitions]

endspec

formal-parameter-list ::= [gate-tuple] ":" functionality

gate-tuple ::= "[" gate-identifier-list "]"

gate-identifier-list ::= gate-identifier { "," gate-identifier }

functionality ::= exit] noexi t

67

behavior-expression ::=
stop
gate-identifier ";" behavior-expression
behavior-expression "~" behavior-expression
process-identifier [gate-tuple]
behavior-expression "llr' behavior-expression
behavior-expression "1[" gate-identifier-list "]1" behavior-expression
exit
behavior-expression ">>" behavior-expression
behavior-expression "[>" behavior-expression
hide gate-identifier-list in behavior-expression

local-definitions ::= where process-definition { process-definition }

process-definition ::=
process process-identifier formal-parameter-list ":="

behavior-expression
endproc

specification-identifier ::= identifier

process-identifier ::= identifier

gate-identifier ::= identifier

identifier ::= letter [{ normal-character I "-" } normal-character]

normal-character ::= letter I digit

In a "process-definition", the term "behavior-expression" is called the defi-
ning behavior-expression of the process named "process-identifier".

A p p e n d i x B: T h e s i m u l a t i o n o f a P / T - n e t in P L o t o s

P/T-net

Pl ~ t4 tlXt
pPQ' -t3

68

Trans l a t i on of places

process Pl It 1]:noexit :=
stop

endproc

process token1 [tl]:noexit:=
tl; stop

endproc

process P2 [t 1] :noexit :=
tl; token2[]lllp2[tl]

endproc

process token2 []:noexit:=
stop

endproc

process p3[t 1, t2] :noexit :=
t l; token3[t2111[pz[tl,t~]

endproc

process token3 [tz]:noexit:=
t~ ;stop

endproc

process p4[t2, t3, t4]:noexit:--
t2; token, [t3]l I IP4 It2, t3, t4]

[]
t4 ;token, It3] I I IP4 [t2, t3~ t4]

endproc

process token4[t3]:noexit:=
t3;stop

endproc

Lotos mode l of the P / T - n e t

process Nl,l((1))[tl, t2, t3, t4]:noexit:= P1(1) endproc

process N1,2((1, 0))It1, t2, t3, t,] :noexit:-- P2(0)I[tl] IN1,1 ((1))[t 1, t2, ta, t4] endproc

process N1,3((1,0, 0))It1, t.9, t3, ta]:noexit:= P3(0)l[tl] 1N1,2((1, 0))[tl, t2, t3, t4]
endproc

process N1,4((1, 0, 0, 0))[tl, t2, t3, t@noexit:= g,(0)l[t~] INl,z((1, 0, 0))[tl, t2, t3, t4]
endproc

where

/:'1 (1) = token1 [till liP1 [tl]
P2(O) = p2[tl]
P3(0) = p3[tl,t]
p4(O) • p4[t2, t3, t4]

